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A B S T R A C T

The glycine cleavage system (GCS) is a complex of four enzymes enabling glycine to serve as a source of one-
carbon units to the cell. We asked whether concentrations of glycine, dimethylglycine, formate, and serine in
blood are influenced by variation within GCS genes in a sample of young, healthy individuals. Fifty-two variants
tagging (r2 < 0.9) the four GCS genes were tested; one variant, GLDC rs2297442-G, was significantly associated
(p= .0007) with decreased glycine concentrations in serum.

1. Introduction

The glycine cleavage system (GCS) is a crucial component of mi-
tochondrial one-carbon metabolism (OCM). The GCS involves four
distinct enzymes: glycine decarboxylase (GLDC), aminomethyl-
transferase (AMT), glycine cleavage system protein H (GCSH) and di-
hydrolipoamide dehydrogenase (DLD). These enzymes act sequentially
in the mitochondrion to cleave glycine obtained from the cytoplasm or
from the breakdown of serine in the mitochondrion to produce N,N-
methylene tetrahydrofolate (CH2-THF), an active folate derivative that
contributes to the transfer of one‑carbon units in cellular reactions [1].

Loss-of-function mutations in two GCS genes (GLDC and AMT [2])
cause non-ketotic hyperglycinemia (NKH), a rare recessive disease.
Additionally, two NKH patients have been observed to have a complex
rearrangement of GCSH [3]. Affected patients suffer from neurological
impairments, seizures, and developmental delay, suggesting that the
GCS is important for normal brain development and function [4]. In a
study population of patients from the UK, Sweden and Japan, two of the
genes encoding GCS enzymes, AMT and GLDC, were found to have
missense variants associated with neural tube defects (NTDs) [5]. Si-
milarly, variants in these genes were identified in a study of American
patients with myelomeningocele, a type of NTD [6]. Finally, GLDC
rs14742391 (p.Ser951Tyr) has been observed in a patient with NKH [2]
and a patient with anencephaly, a type of NTD [7].

Although genome-wide association studies (GWASs) can identify

gene variants that influence traits, they are often underpowered to
detect signals [8] from real but small effects of common alleles, or large
effects of rare alleles. GWASs have been carried out for serum glycine,
identifiying a single nucleotide polymorphism (SNP) in carbamoyl-
phosphate synthase 1 (rs715) [9–12]. Blood serine has been associated
with a SNP in phosphoglycerate dehydrogenase (rs477992) [9, 12,
13]). To test for other genetic modifiers of OCM that may have been
missed by the GWAS method, we examined whether common variants
in the genes of the GCS influence relevant metabolites in a healthy
population.

2. Materials and methods

2.1. The Trinity Student Study (TSS) cohort

The TSS cohort comprises a population of 2232 healthy Irish stu-
dents, as described [14–16]. Informed consent and ethical approval
were obtained from all participants. Briefly, blood samples were col-
lected into EDTA and clotting tubes, processed within 3 h, and stored at
−80 °C before assaying. Glycine (interassay CV=3.3%) and serine
(interassay CV=5.7%) in serum were measured with gas-chromato-
graphy tandem mass spectrometry (GC–MS/MS [17]) and plasma di-
methylglycine (interassay CV<10%) by liquid-chromatography
tandem mass spectrometry (LC-MS/MS [18]) by the laboratory of
Bevital, Norway (www.bevital.no). Formate was measured using a
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newly developed GC–MS method [19]. A single control sample was
frozen in aliquots for daily analysis with formate assays of participant
serum samples. The day-to-day variation for this sample was 7.4%
(n=38). Genome-wide SNP genotyping was conducted at the Center
for Inherited Disease Research (CIDR, USA) using Illumina 1M Hu-
manOmni1-Quad_v1-0_B chips.

2.2. Metabolite association analyses

Conservative (r2 < 0.9) tagging variants in the four GCS genes in-
cluding 10 kb flanking regions were selected to test for association with
levels of serum glycine, plasma dimethylglycine, serum serine, and
serum formate. Log10 transformations of metabolite concentrations
were used to meet normality assumptions. Linkage disequilibrium (LD)
analyses were performed with Haploview; a total of 52 tag SNPs cov-
ering 93 variants were selected for association testing [20, 21]. For each
SNP, association was tested using linear regression with a 1-df test
(additive genetic model) or a 2-df test (genotypic model) (R statistical
language and environment (version 3.3.2) [22], R package snpStats
[23]). Bonferroni correction for 52 tests was applied to the nominal
significance threshold (p < .05) to obtain a corrected significance
threshold (p < .00096). Associations between log10 transformed me-
tabolite data were assessed using Pearson's correlation coefficient (r).

2.3. GLDC expression association analyses

The public Gene-Tissue Expression resource (https://www.
gtexportal.org/home) was used to search for associations between
SNPs and GLDC mRNA levels (mRNA expression quantitative trait
locus, eQTLs).

3. Results

The 52 tag SNPs in the four glycine cleavage genes (GLDC, AMT,
GCSH, and DLD) were tested for association with blood levels of gly-
cine, dimethylglycine, formate, and serine in 2232 young healthy Irish
adults (Table 1). Serum glycine concentrations were significantly cor-
related with all the other metabolites measured. The strength of these
associations varied from r=0.52; p < .001 with serine to −0.07;

p= .004 with formate. Only one GCS SNP is significantly associated
with a metabolite. GLDC rs2297442 returns a p-value of 0.0007 fol-
lowing 1-df association testing with log10 transformed glycine con-
centration. The 2-df test of association is also significant (p= .0031),
nominally.

We then sought to replicate the association between rs2297442-G
and decreased levels of circulating glycine by examining results from
two recent GWASs in which glycine was measured. Our observation was
replicated in two studies of Finnish individuals (n=16,506,
ß=−0.039, p= .0014 [24]; n=8545, ß=−0.039, p= .028 [25]).

We also asked if GLDC mRNA expression levels are influenced by
rs2297442 genotype. A Gene-Tissue Expression (GTEx) query of
rs2297442 did not reveal a strong or consistent effect on GLDC mRNA
levels across multiple tissues. In contrast, several other GLDC SNPs
strongly influenced GLDC mRNA levels in several tissues
(p < 1×10−40). For example, in thyroid tissue, GLDC rs35374927 is
estimated to have a large impact on GLDC mRNA levels compared to
GLDC rs2297442 (Fig. 1). These eQTLs of strong effect reside in LD
blocks near the 5′ end of the gene, as opposed to the SNPs in the LD
block at the 3′ end of the gene where rs2297442 is located.

4. Discussion

The results of these association tests confirm that variation in GLDC
can influence serum glycine concentrations. The variant reported here,
GLDC rs2297442, is a noncoding polymorphism found in the seventh of
the ten introns in this gene. The GTEx data revealed that other, un-
linked SNPs in the gene have a larger impact on GLDC mRNA levels,
albeit in limited, specific tissues. We conclude that rs2297442 does not
influence serum glycine levels via modulation of GLDC transcript levels.
It is possible that rs2297442 is simply linked to the causal SNP. A search
for a linked, exonic SNP in a population of European ancestry [26]
failed to identify any strongly related variants (r2 < 0.2).

These results are consistent with the presence of a common SNP in
GLDC that may increase the activity or alter the tissue distributions of
this enzyme, causing reduced levels of circulating glycine. We predict
that this effect on serum glycine concentrations may not be clinically
relevant in this healthy population; however, it may contribute to dis-
eases with a complex mode of inheritance, where combinations of many
environmental and genetic factors of small individual effect must con-
verge. The known link between folic acid supplementation and neural
tube defect (NTD) prevention implicates perturbations of OCM as a key
risk factor. In a study of 258 NTD patients, 27 single-base substitutions
were discovered in GLDC, six of which influenced enzyme activity in an
in vitro system [5]. The association between GLDC rs2297442 and
serum glycine levels in the healthy populations in this study and others
identifies a candidate locus for studies investigating the genetic basis of
NKH, NTDs or any pathophysiology involving OCM.
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Table 1
Metabolite characteristics in the TSS and by genotype group of its most asso-
ciated GCS variant.

Serine (μM) Glycine
(μM)

Dimethylglycine
(μM)

Formate (μM)

Mean +/−
SD

147.2 +/−
23.9

293.7 +/−
63.9

4.17 +/− 1.22 25.9 +/− 7.8

Median 145.6 288.1 3.99 24.8
Number⁎ 2210 2210 2227 1535
Top SNP rs2297442 rs2297442 rs16924717 rs7031325
p-value⁎⁎ 0.0225 0.0007 0.0047 0.0133

Genotype
(No.)

AA (1198) AA (1198) AA (2130) TT (647)

Mean +/−
SD

148.1 +/−
24.5

297.6 +/−
65.8

4.2 +/− 1.2 26.1 +/− 8.2

Genotype
(No.)

AG (848) AG (848) AG (95) TC (701)

Mean +/−
SD

146.9 +/−
23.7

290.6 +/−
63.2

4.6 +/− 2 25.7 +/− 7.1

Genotype
(No.)

GG (164) GG (164) GG (2) CC (187)

Mean +/−
SD

143.1 +/−
23.4

281.1 +/−
53.7

3.8 +/− 2.7 25.9 +/− 9

⁎ Number of participants with metabolite and genotype values.
⁎⁎ The Bonferroni-corrected threshold for significance is p < .00096.
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Fig. 1. Association of rs2297442 (left) or
rs35374927 (right) with GLDC mRNA levels in
human thyroid. In these graphs generated by GTEx,
participants are grouped by genotype and plotted for
ranked normalized expression of GLDC mRNA in
thyroid. Unadjusted p-values for linear regression
analyses are shown. GLDC rs2297442 effect size (i.e.,
slope of the linear regression)= 0.3. GLDC
rs35374927 effect size =1.0.
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